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Imperfectly shuç ed decks in bridge

EDVIN BREDRUP & LI-CHUN ZHANG, University of Tromsù , Norway

SUMMARY In this paper, we study the distribution tables of imperfectly shuç ed hands

in a bridge game under a conditional Markov chain model, based on which a simple

approximate test on the randomness of the decks is derived. The idea is to examine whether

a stochastic process is a compound hypergeometric process, through the number of its ties,

and it is easily adapted to similar situations.

1 Introduction

During a bridge game, a player constantly needs to ® nd the optimal strategy, given

various situations. It is insu� cient to base one’s decisions purely on psychological

grounds alone, and calculated judgements require knowledge on the distributions

of the hands being played. For instance, a classical situation arises if we suppose

that N and S have, respectively, K 3 3 3 and A J 10 9 3 in ª . The optimal play is

to put down A and K in the ® rst two rounds that ª are played, which has a
57.92% chance of clearing the suit, because it fails only when Q is accompanied

by more than one card. The same percentage is 56.22% for playing A ® rst and

®̀ nessing’ afterwards. Given the fact that a team normally has to play more than

100 games in a tournament, one can hardly aŒord not to consider a margin of this

size. In addition, such knowledge is of vital interest when it comes to the construc-

tion of the bidding system.
An important matter in this respect was discussed in Berger (1973), which

concerned the diŒerences between computer-dealt hands and those dealt `manu-

ally’ . Berger conjectures that the manually dealt hands, presumably imperfectly

shuç ed, would not follow the standard distribution tables given in the bridge

literature. To study the problem, we propose here a conditional Markov chain
model, the parameters of which are to be estimated via simulations. A simple test

on the randomness of the decks is devised. Moreover, the consequences of the

imperfectly shuç ed cards are indicated at the end of the paper. In particular, the
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underlying idea of our approach is to examine whether a stochastic process is a

random process, through the number of its ties, and it can easily be adapted to

other similar cases.

2 The theory

2.1 A model for imperfectly shuç ed decks

To model the biased hands, we start with the unbiased hands. Throughout the text

which follows, we use the notation 0 to denote ª , 1 for , 2 for e and 3 for § .

No distinction is made between the cards within the same suit. Let X be a vector
of 52 coordinates; it is a `deck’ if it contains an equal number of 0, 1, 2 and 3, i.e.

13 of each; and there are

C 5
52!

(13!)4
(1)

distinct X combinations in total. A deck is `perfect’ if, as one deals out the cards

consecutively, the probability of the next card’s being from a certain suit is strictly

proportional to the number of cards that remain from the same suit. More explicitly,

let m i, j be the number of j cards after the ith card is dealt. We have

P[X i+ 1 5 j ½ (m i,0 , m i,1 , m i,2 , m i,3)] 5
(13 2 m i, j)

(52 2 i )
(2)

where

i 5 R
3

j 5 0

m i, j for 0 < i < 51

Noticing the similarity between the con® gurations of a perfect deck and the samples

from a compound hypergeometric distribution, we call the process generated by

consecutively dealing out the cards of a perfect deck a `compound hypergeometric
process’ (CHP). Some aspects of a CHP are worth noticing. Denote by X the

sample space of X of the size C. We have the following.

Lemma 1. P[X 5 x] 5 1 /C, ; x Î X .

Lemma 2. A CHP is strictly stationary.

For any s, r ( > 0) and 1 < i1 < i2 . . . < is < 51 such that is + r < 52, and for any

xs 5 (xi1
, . . . ,xis

), there are exactly the same number of vectors of X that contain

X s 5 xs as there are that contain Xs+ r 5 (X i1+ r , . . . , X is+ r ) 5 xs . It follows from
Lemma 1 that P[X s 5 xs ] 5 P[X s+ r 5 xs ]. Therefore, a CHP is also second-order

weakly stationary. Now, ; 1 < i < 51, (xi , x i+ 1 ) is a `tie’ if x i 5 xi+ 1 . Let Ti 5 1 if

(x i , xi+ 1 ) is a tie; and 0 otherwise. Let K be the total number of ties in a deck, i.e.

K 5 R 51
i 5 1 Ti . We have the following.

Lemma 3. Given a CHP, E[K ] 5 12.

It follows from Lemma 2 that P[X i+ 1 5 0 ½ X i 5 0] 5 12 /51, i.e.

E[K ] 5 4 R
i

P[X i 5 X i+ 1 5 0] 5 4 R
i

(1 /4)(12 /51) 5 12
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Meanwhile, Y 5 (Y1 , . . . , Y52) is a `multinomial process’ (MP) if all its coordinates

are independent copies of a multinomial random variable with parameters

p j 5 P[Y i 5 j] subject to the constraint R 3
j 5 0 p j 5 1. Denote by D the case in which

Y happens to be a deck. Let X D be the sample space of Y conditional to D, i.e.

X D 5 X . We have the following.

Lemma 4. P[Y 5 y ½ D] 5 1 /C, ; y Î X D.

Lemma 5. The MP is strictly stationary.

Lemma 6. Given an MP, E[K ½ D] 5 12, provided that p j 5 1 /4 for 0 < j < 3.

In short, conditional to D, an MP with equal probabilities is a CHP. Notice that,

given a CHP at stage i, the probability of X i+ 1 5 j depends on (X1 , X2 , . . . , X i)
through m i, j , rather than through x i directly. However, this is seldom the case in

the reality of bridge. Even when the cards are placed according to the rules, with

each player’s cards in front of them, the cards usually do not follow each other

randomly. This is because it is common that one suit should be played for several

consecutive rounds before shifting to another. This suggests that the dependence

between two consecutive cards in any imperfectly shuç ed decks is likely to be
greater than that in a perfect deck. Therefore, consider a Markov chain of

(X1 , X2 , . . . , X52), such that

P[X1 5 j] 5 1 /4, j 5 0, 1, 2, 3 (3)

and, ; 1 < i < 51, we have

P[X i+ 1 5 j ½ X i 5 r] 5 p, if j 5 r (4)

and

P[X i+ 1 5 j ½ X i 5 r] 5 (1 2 p) /3, if j ¹ r (5)

We propose to model the imperfect process (IP), generated by consecutively dealing

out the cards of an imperfectly shuç ed deck, as the Markov chain de® ned above
conditional to D. Notice that we recover the MP with equal probabilities when p

is set to be 1 /4, and we recover the CHP if D is satis® ed in addition. Otherwise,

the distribution of the conditional markov chain (CMC) over X becomes a function

of p, indicating deviation from a CHP. In fact, simulation shows that the CMC is

approximately second-order weakly stationary, which means that the tendency

towards ties is about the same everywhere within the chain.

2.2 Parameter estimation

Assume n mutually independent IPs. Under the CMC model, the log likelihood is

given as

l(p) 5 kÅ log p+ (51 2 kÅ ) log(1 2 p) 2 log f(p) (6)
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FIG. 1. Simulation results for f ( p) 5 P[D ½ p]. The marked values are estimates based on 50 million MCs

generated at each given p.

where

kÅ 5 R
n

i 5 1

k i

n

with ki being the number of ties within the ith deck, and

f(p) 5 P[D ½ p] (7)

It is di� cult to obtain the analytical form of f( p). However, it can be estimated

from the simulations. Figure 1 shows a plot of the values of f( p) estimated based

on simulations from 50 million Markov chains at each marked p. The ® tted curve

indicates that f( p) is decreasing in p. Notice that f( p) 5 0 for p 5 1, and f(p)> 0

even if p 5 0.
To maximize l( p), one could include the ® tted f(p) as known. Alternatively, one

could estimate f(p) over a set of ® ne-grid values of p, and choose the estimate with

the largest l(p). To ® nd the suitable interval for the grid of p, we turn to the `quick-

® t’ estimate, de® ned as

pÃ q
f
5

13KÅ

13KÅ + 12(51 2 KÅ )
(8)

This can be motivated as follows. Given n independent Markov chains, E[KÅ ] 5 51p.

Conditional to D, we adjust via a weighing mechanism

EÃ [K ] 5 (51ap) /[(1 2 p)+ ap], for a Î (0, 1)

Conforming this to the case of independent CHPs gives us a 5 12 /13.

The distribution of the data belongs to a one-parameter exponential family, so

that pÃ is asymptotically unbiased, e� cient and normally distributed with variance

equal to the Cramer± Rao lower bound, i.e.
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Var(pÃ ) 5 [nI(p)] 2 1 + O (1

n
) (9)

where I(p) is the Fisher information from a single deck, i.e.

I(p) 5 E[K ] /p2+ (51 2 E[K ]) /(1 2 p)2 + [ f "(p)f( p) 2 f Â ( p)2 ] /f( p)2 (10)

In practice, E[K ] can be estimated by KÅ , whereas an evaluation of the last term

on the right-hand side might be obtained by applying polynomial regression to the

simulated values of f(p), for example.

2.3 A test

Set up the test on the randomness of the shuç ed decks as

H0 : p 5 1 /4, H1 : p> 1 /4

Simulations under the null hypothesis gave us E[pÃ q f ] » 1 /4 and Var(pÃ q f) » 1 /(256n).

In fact, pÃ qf is so close to pÃ for p around 1 /4 that the normal approximation applies

to it directly. In other words, we have (approximately)

Z 5 16n1 /2(pÃ q f 2 1 /4) ~ N(0, 1) (11)

Thus, a test at level- a rejects H0 if Z> z a , where z a is the 100(1 2 a )% percentile

of Z. In contrast, the Taylor expansion after inverting for KÅ gives

KÅ > k a 5 12 + (52z a ) /(17n1 /2 ) + O (1

n) (12)

Simulations have con® rmed that the approximate critical region above is correct

for n > 4. Moreover, k a ® 12 for n ® ` , as it should according to Lemma 3. It
should be noticed that the ideas (1) of simulating the CHP through the conditional

multinomial process with equal probabilities, and (2) of examining its `properness’

through the number of ties, are easily adapted to similar situations.

3 Twenty-four actual imperfectly shuç ed decks

After one tournament at the Student Bridge Club in Tromsù , one of the authors

collected all the 24 decks used that night, shuç ed them one by one, and observed

that KÅ 5 452/24 5 18.83. The critical region in this case is KÅ > 13.6 at the 5%
level. Maximizing l( p) by simulation gives us pÃ 5 0.384, as compared with the

quick-® t pÃ q f 5 0.388, with estimated standard error 4.4 3 10 2 3 . Further simulations

of 50 million Markov chains at p 5 0.384 have resulted in 76 402 decks giving us

the results in Table 1 of the distribution of the suits in one bridge hand.

In particular, when N and S (N± S) hold nine trumps, the distribution of the

remaining cards is given as

2 ± 2: 41.8%, 3 ± 1: 50.1%, 4 ± 0: 8.1%

Compare this with the standard table from Kelsey and Glauert (1980) at p 5 0.25

(Table 2).
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TABLE 1. Approximate distribution of a

bridge hand given imperfectly shuç ed decksa

Con® guration Rate (100%)

4 ± 4 ± 3 ± 2 24.6

5 ± 4 ± 3 ± 1 12.3

6 ± 4 ± 2 ± 1 3.65

5 ± 5 ± 2 ± 1 2.60

6 ± 4 ± 3 ± 0 0.92

5 ± 3 ± 3 ± 2 16.6

5 ± 4 ± 2 ± 2 10.7

4 ± 4 ± 4 ± 1 2.97

7 ± 3 ± 2 ± 1 1.25

5 ± 5 ± 3 ± 0 0.62

4 ± 3 ± 3 ± 3 12.9

6 ± 3 ± 2 ± 2 5.01

6 ± 3 ± 3 ± 1 2.88

5 ± 4 ± 4 ± 0 0.96

Others 2.04

aSimulated at p 5 0.384.

TABLE 2. Distribution of a bridge hand given

perfectly shuç ed decks, where p 5 0.25

Con® guration Rate (100%)

4 ± 4 ± 3 ± 2 21.6

5 ± 4 ± 2 ± 2 10.6

6 ± 4 ± 2 ± 1 4.70

4 ± 4 ± 4 ± 1 2.99

5 ± 4 ± 4 ± 0 1.24

6 ± 5 ± 2 ± 0 0.65

5 ± 3 ± 3 ± 2 15.5

4 ± 3 ± 3 ± 3 10.5

6 ± 3 ± 3 ± 1 3.45

7 ± 3 ± 2 ± 1 1.88

5 ± 5 ± 3 ± 0 0.90

7 ± 2 ± 2 ± 2 0.51

5 ± 4 ± 3 ± 1 12.9

6 ± 3 ± 2 ± 2 5.64

5 ± 5 ± 2 ± 1 3.17

6 ± 4 ± 3 ± 0 1.33

6 ± 5 ± 1 ± 1 0.71

Others 1.74

In particular, when N and S hold nine trumps, the distribution of the remaining

cards is given as

2 ± 2: 40.7%, 3 ± 1: 49.7%, 4 ± 0: 9.6%

Judging from Tables 1 and 2, it seems that imperfectly shuç ed decks reduce the

probabilities of longer suits. If we return to the problem in the ® rst section, where
N and S hold nine cards in one suit, with all the top cards except Q, it appears

that the optimal play would give a 58.58% probability of success on this occasion.

In contrast, the rate is 56.26% for playing A ® rst and ®̀ nessing’ afterwards. indeed,

if the imperfectly shuç ed decks do reduce the chances for longer suits as noted,
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then the greater bias it is, the greater success this gives for the optimal play. (The

same may not be said about the ® nessing.) Note also that, as the bias grows larger,

it may be the case that only pÃ is admissible, because we did not study in this paper

how pÃ q f would behave under such conditions. Finally, because there are obviously

no `standard’ imperfectly shuç ed decks, we refer to Bredrup and Zhang (1993)

for the distribution tables of one bridge hand under the various values of p.
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